import numpy as np
from statsmodels.distributions.empirical_distribution import ECDF
from scipy.spatial.distance import cdist
# dimensions : (16, 113) (200, 12, 16, 113) (200, 12, 16, 113)
[docs]def stats_tfrs_avg(tfr_null, tfr_emp, correction):
"""
Compute p-values obtained from 2-fold permutation RSA tests
This functions computes p-values obtained from TFR-RSA.
.. todo::
* Adapt the function to work with 3D arrays (i.e. 2D space-time-frequency maps).
* Add the possibility to use a different distance metric.
* Add the possibility to use a different cluster correction method.
:param float stat: un-corrected p-values for each frequency (and/or time) bin.
:param float alpha: statistical threshold (e.g. 0.05).
:return: corrected p-values for each frequency-time or space-time bin.
:rtype: float
@author: Nicolas Gravel, 19.09.2023
"""
n_perm = tfr_null.shape[0] # (12, 16, 113) (20, 12, 16, 113)
tfr = np.nanmean(tfr_emp,axis=0) # average sites
nullDist = tfr_null
if correction == "space":
nullDist = np.amax(nullDist,axis=1) # max across sites
#nullDist = np.nanmean(nullDist,axis=1) # max across sites
elif correction == "frequency":
#nullDist = np.nanmean(tfr_null,axis=0)
nullDist = np.amax(nullDist,axis=2) # max across freqs
#nullDist = np.nanmean(nullDist,axis=2) # max across sites
elif correction == "space-frequency":
nullDist = np.amax(nullDist,axis=(1,2)) # max across freqs
elif correction == "no":
nullDist = np.nanmean(tfr_null,axis=1)
print(nullDist.shape)
print('dimensions :', tfr.shape, tfr_null.shape, nullDist.shape)
stats = np.zeros((tfr.shape[0],tfr.shape[1]))
time = np.linspace(start = -800, stop = 2000, num = tfr_null.shape[2])
t0 = np.searchsorted(time,400,side='left', sorter=None)
tf = np.searchsorted(time,1000,side='left', sorter=None)
for i_freq in range(stats.shape[0]):
for i_time in range(stats.shape[1]):
if correction == "space":
null = nullDist[:,:,i_time]
elif correction == "frequency":
null = nullDist[:,:,i_time]
elif correction == "space-frequency":
null = nullDist[:,i_time]
elif correction == "no":
null = tfr_null[:,:,:,i_time]
obs = np.squeeze(tfr[i_freq,i_time])
ecdf = ECDF(null.flatten())
p_fwe = ecdf(obs)
stats[i_freq,i_time] = 1.0 - p_fwe
#stats[i_freq,i_time] = (null >= obs).sum() / n_perm
return stats